Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles by H. Zhong et al.

H. Zhong,^a* S.-H. Duan,^a Y.-P. Hong,^a M.-L. Li,^a Y.-Q. Liu,^a C.-J. Luo,^a Q.-Y. Luo,^a S.-Z. Xiao,^a H.-L. Xie,^a Y.-P. Xu,^a X.-M. Yang,^{b,a} X.-R. Zeng^a and Q. Y. Zhong^c

^aCollege of Chemistry and Chemical Engineering, Provincial Key Laboratory of Coordination Chemistry, Jinggangshan University, Jian 343009, People's Republic of China, ^bInstitute of Applied Materials, Jiangxi University of Finance and Economics, Nanchang 330032, People's Republic of China, and ^cJian Training School, Jian 343000, People's Republic of China Correspondence e-mail: huazhong06@126.com

Received 20 November 2009; accepted 15 December 2009

A series of 41 papers by H. Zhong et al. are retracted.

As a result of problems with the data sets and incorrect atom assignments, 41 papers by H. Zhong *et al.* are retracted. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
Aquachlorobis(1,10-phenanthroline)cobalt(II) chloride thiourea solvate cis-Dichlorobis(1,10-phenanthroline)cobalt(II) Tris(auinolin-8-olato-x ² N.Olcobalt(III) elvoxal hemisolvate monohvdrate	Zhong, Zeng, Liu & Luo (2006a) Zhong, Zeng & Luo (2006) Zhong, Zeng, Liu & Luo (2006b)	10.1107/S1600536806041122 10.1107/S1600536806047295 10.1107/S1600536806050240	KERQEE MEQFOE MEOHEW
(8-Quinolinol-k ² N,O)bis(8-quinolinolato-k ² N,O)nickel(II) glyoxal hemisolvate monohydrate	Zhong, Zeng, Liu & Luo (2007)	10.1107/S1600536806053232	METVUD
Aquachlorobis(1,10-phenanthroline)cobalt(II) chloride thioacetamide solvate	Zhong, Zeng & Luo (2007)	10.1107/S1600536806053530	METQIM
(8-Quinolinol-k ² N,O)-bis(8-quinolinolato-k ² N,O)zinc(II) glyoxal hemisolvate monohydrate	Zhong, Zeng, Luo, Li & Xiao (2007)	10.1107/S1600536807001171	DEXTEG
$(Dimethylglyoxime-\kappa^2 N, N')$ bis $(1, 10$ -phenanthroline- $\kappa^2 N, N')$ nickel (II) dinitrate dihydrate	Zhong, Zeng, Yang, Luo & Li (2007a)	10.1107/S1600536807004102	YEYGOZ
$(Dimethylglyoxime-\kappa^2 N, N')bis(1, 10-phenanthroline-\kappa^2 N, N')zinc(II)$ dinitrate dihydrate	Zhong, Zeng, Yang, Luo & Li (2007b)	10.1107/S1600536807004096	YEYGUF
Chloridobis(1,10-phenanthroline- $\kappa N, N'$)copper(I) hexahydrate	Zhong, Zeng, Yang, Luo & Xiao (2007)	10.1107/S160053680700791X	HEGKOU01
$Tetrakis(pyridine-\kappa N)bis(thiocyanato-\kappa N)cobalt(II)$	Zhong, Zeng, Yang & Luo (2007a)	10.1107/S1600536807017461	ITCPCO01
Tetrakis(pyridine-кN)bis(thiocyanato-кN)copper(II)	Zhong, Zeng, Yang & Luo (2007b)	10.1107/S160053680701879X	AVUJEG02
Tetrakis(nitrato- $\kappa^2 O, O'$)bis(4-phenylpyridine- κN)cerium(IV)	Zhong, Zeng, Yang & Luo (2007c)	10.1107/S1600536807018831	CICDOI
Bis(4,4'-bipyridine- $\kappa^2 N, N'$)tetrakis(nitrato- $\kappa^2 O, O'$)cerium(IV)	Zhong, Zeng, Yang & Luo (2007d)	10.1107/\$1600536807021502	YIDNEF
(1,10-Phenanthroline)tris(phenoxyacetato)lanthanum(III)	Zhong, Zeng, Yang, Luo & Xu (2007)	10.1107/S1600536807027171	EDUROL
(1,10-Phenanthroline)tris(phenoxyacetato)cerium(III)	Zhong, Yang, Luo & Xu (2007a)	10.1107/S1600536807028061	EDUTUT
(1,10-Phenanthroline)tri(3-phenylpropanoato)lanthanum(III)	Zhong, Yang, Luo & Xu (2007b)	10.1107/S1600536807028693	RIGQEE
(1,10-Phenanthroline-κ ² N,N')tris(phenoxyacetato)-κΟ;κΟ;κΟ,Ο'- neodymium(III)	Zhong, Yang, Luo & Xu (2007c)	10.1107/S1600536807030371	UDUMEM
Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)bis(thiocyanato- κN)nickel(II)	Zhong, Yang, Luo & Xu (2007d)	10.1107/S1600536807031613	YEJGOJ01
$Bis(2,2'-bipyridyl-\kappa^2N,N')bis(isothiocyanato-\kappa N)copper(II)$	Zhong, Yang, Luo & Xu (2007e)	10.1107/S1600536807033181	UFAPOH
Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)bis(thiocyanato- κN)zinc(II)	Zhong, Yang, Luo & Xu (2007f)	10.1107/S1600536807035337	TIGFAR
$(1,10$ -Phenanthroline- $\kappa^2 N, N'$)tris $(3$ -phenylpropanoato- κO)neodymium(III)	Zhong, Yang, Luo & Xu (2007g)	10.1107/S1600536807035350	TIGFEV
2-Fluoro-3,5-dinitrobenzamide monohydrate	Zhong, Yang, Xie & Luo (2007j)	10.1107/S1600536807038676	VIKGAY
2-Fluoro-3,5-dinitrobenzoic acid-ammonia (1/1)	Zhong, Yang, Xie & Luo (2007k)	10.1107/S1600536807039724	KILKIA
1-Hydroxy-4,6-dinitropyridine-2-carboxamide monohydrate	Zhong, Yang, Xie & Luo (20071)	10.1107/S1600536807040779	AFETAH
N-(2-Hydroxyphenyl)carbamic acid-ammonia (1/1)	Zhong, Yang, Xie & Luo (2007m)	10.1107/S160053680704086X	AFINAF
catena-Poly[[bis(μ-anilinoacetato-κ ² O:O')bis(μ-anilinoacetato- κ ³ O,O':O)bis[(1,10-phenanthroline-κ ² N,N')samarium(III)]-μ-anilino- acetato-κ ² O:O']	Zhong, Yang, Xie & Luo (2007 <i>a</i>)	10.1107/S1600536807043528	PILDAQ
2-Hydroxy-5-nitrobenzene-1,3-dicarboxylic acid monohydrate	Zhong, Yang, Xie & Luo (2007n)	10.1107/S1600536807045199	XILWIZ
catena-Poly[[tetra-µ-anilinoacetato-bis(1,10-phenanthroline)- dineodymium(III)]-di-µ-anilinoacetato]	Zhong, Yang, Xie & Luo (2007b)	10.1107/S1600536807048489	WIMWEV
Hexaaquacopper(II) bis(4-methylbenzenesulfonate)	Zhong, Yang, Xie & Luo (2007c)	10.1107/\$1600536807049525	TOLSCV01

Table 1 (continued)

Title	Reference	DOI	Refcode
catena-Poly[[tetra-µ-anilinoacetato-bis(1,10-phenanthroline)- dilanthanum(III)]-di-µ-anilinoacetato]	Zhong, Yang, Xie & Luo (2007d)	10.1107/S1600536807051240	GIMZEI
Hexaaquachromium(II) bis(4-methylbenzenesulfonate)	Zhong, Yang, Xie & Luo (2007e)	10.1107/S1600536807051227	GIMZIM
Hexaaquamanganese(II) bis(4-methylbenzenesulfonate)	Zhong, Yang, Xie & Luo (2007f)	10.1107/S1600536807052051	QUKQES01
catena-Poly[[(acetato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')cobalt(II)]- μ -acetato- $\kappa^2 O$:O']	Zhong, Yang, Xie & Luo $(2007g)$	10.1107/S1600536807053494	NIQLAB
Hexaaquanickel(II) bis(4-aminobenzenesulfonate)	Zhong, Zhong, Xie & Luo (2007a)	10.1107/S1600536807054372	HIPZOW
catena-Poly[[(acetato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')copper(II)]- μ -acetato- $\kappa^2 O$:O']	Zhong, Yang, Xie & Luo (2007h)	10.1107/S160053680705622X	XIRGOV
Hexaaquazinc(II) bis(4-aminobenzenesulfonate)	Zhong, Zhong, Xie & Luo (2007b)	10.1107/S1600536807056498	XIRJEO
catena-Poly[[(acetato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')nickel(II)]- μ -acetato- $\kappa^2 O$:O']	Zhong, Yang, Xie & Luo (2007 <i>i</i>)	10.1107/S1600536807058540	HIQJOH
Hexaaquacobalt(II) bis(4-aminobenzenesulfonate)	Zhong, Xie & Luo (2007)	10.1107/S1600536807058527	HIQJUN
catena-Poly[[tetra-µ-anilinoacetato-bis(1,10-phenanthroline)- dieuropium(III)]-di-µ-anilinoacetato]	Zhong, Yang, Duan & Hong (2007)	10.1107/S1600536807060643	YIQMAN
(Dimethylglyoxime- κ^2 N,N')bis(1,10-phenanthroline- κ^2 N,N')copper(II) dinitrate dihydrate	Zhong, Yang, Luo & Li (2007)	10.1107/S1600536807061193	YIQNUI
catena-Poly[[(,10-phenanthroline-κ ² N,N')praseodymium(III)]- di-µ-phenoxyacetato-κ ⁴ O:O'-[(1,10-phenanthroline-κ ² N,N')- praseodymium(III)]-di-µ-phenoxyacetato-κ ⁴ O:O'- di-µ-phenoxyacetato-κ ³ O,O':O;κ ³ O:O,O']	Zhong, Yang, Luo & Xu (2008)	10.1107/\$1600536807068614	GISJIC

References

- Zhong, H., Xie, H.-L. & Luo, C.-J. (2007). Acta Cryst. E63, m3054.
- Zhong, H., Yang, X.-M., Duan, S.-H. & Hong, Y.-P. (2007). Acta Cryst. E63, m3142–m3143.
- Zhong, H., Yang, X.-M., Luo, C.-J. & Li, M.-L. (2007). Acta Cryst. E63, m3160– m3161.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007a). Acta Cryst. E63, m1885–m1886.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007b). Acta Cryst. E63, m1909.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007c). Acta Cryst. E63, m2019.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007d). Acta Cryst. E63, m2062.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007e). Acta Cryst. E63, m2141.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007f). Acta Cryst. E63, m2208.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007g). Acta Cryst. E63, m2209-m2210.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2008). Acta Cryst. E64, m317– m318.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007a). Acta Cryst. E63, m2508–m2509.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007b). Acta Cryst. E63, m2680–m2681.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007c). Acta Cryst. E63, m2724–m2725.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007d). Acta Cryst. E63, m2772–m2773.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007e). Acta Cryst. E63, m2774.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007f). Acta Cryst. E63, m2825.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007g). Acta Cryst. E63, m2895–m2896.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007h). Acta Cryst. E63, m2979.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007i). Acta Cryst. E63, m3053.

- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007*j*). Acta Cryst. E63, 03780.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007k). Acta Cryst. E63, 03831.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007*l*). Acta Cryst. E63, 03881.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007m). Acta Cryst. E63, 03882.
- Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007n). Acta Cryst. E63, 04191.
- Zhong, H., Zeng, X.-R., Liu, Y.-Q. & Luo, Q.-Y. (2006a). Acta Cryst. E62, m2925–m2927.
- Zhong, H., Zeng, X.-R., Liu, Y.-Q. & Luo, Q.-Y. (2006b). Acta Cryst. E62, m3557–m3559.
- Zhong, H., Zeng, X.-R., Liu, Y.-Q. & Luo, Q.-Y. (2007). Acta Cryst. E63, m187–m189.
- Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330-m3332.
- Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2007). Acta Cryst. E63, m221-m223.
- Zhong, H., Zeng, X.-R., Luo, Q.-Y., Li, M.-L. & Xiao, S.-Z. (2007). *Acta Cryst.* E63, m492–m494.
- Zhong, H., Zeng, X.-R., Yang, X.-M. & Luo, Q.-Y. (2007a). Acta Cryst. E63, m1379.
- Zhong, H., Zeng, X.-R., Yang, X.-M. & Luo, Q.-Y. (2007b). Acta Cryst. E63, m1445.
- Zhong, H., Zeng, X.-R., Yang, X.-M. & Luo, Q.-Y. (2007c). Acta Cryst. E63, m1455.
- Zhong, H., Zeng, X.-R., Yang, X.-M. & Luo, Q.-Y. (2007d). Acta Cryst. E63, m1592–m1593.
- Zhong, H., Zeng, X.-R., Yang, X.-M., Luo, Q.-Y. & Li, M.-L. (2007a). Acta Cryst. E63, m639–m641.
- Zhong, H., Zeng, X.-R., Yang, X.-M., Luo, Q.-Y. & Li, M.-L. (2007b). Acta Cryst. E63, m642–m644.
- Zhong, H., Zeng, X.-R., Yang, X.-M., Luo, Q.-Y. & Xiao, S.-Z. (2007). Acta Cryst. E63, m826–m828.
- Zhong, H., Zeng, X.-R., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007). Acta Cryst. E63, m1868–m1869.
- Zhong, H., Zhong, Q. Y., Xie, H.-L. & Luo, C.-J. (2007a). Acta Cryst. E63, m2913–m2914.
- Zhong, H., Zhong, Q.-Y., Xie, H.-L. & Luo, C.-J. (2007b). Acta Cryst. E63, m2990.

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1,10-Phenanthroline- $\kappa^2 N, N'$)tris-(phenoxyacetato)- $\kappa O; \kappa O; \kappa O, O'$ neodymium(III)

H. Zhong,^a* X.-M. Yang,^b Q.-Y. Luo^a and Y.-P. Xu^a

^aCollege of Chemistry and Chemical Engineering, Provincial Key Laboratory of Coordination Chemistry, Jinggangshan University, Jian 343009, People's Republic of China, and ^bInstitute of Applied Materials, Jiangxi University of Finance and Economics, Nanchang 330032, People's Republic of China Correspondence e-mail: huazhong06@126.com

Received 16 June 2007; accepted 21 June 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.041; *wR* factor = 0.112; data-to-parameter ratio = 17.2.

In the molecule of the title compound, $[Nd(C_8H_7O_3)_3-(C_{12}H_8N_2)]$, the Nd^{III} atom is six-coordinated by two N atoms of the 1,10-phenanthroline (phen) ligand and four O atoms of the three phenoxyacetate ligands. In the crystal structure, intermolecular C-H···O hydrogen bonds lead to a supramolecular network.

Related literature

For bond length data, see: Allen *et al.* (1987). For a related structure, see: Zhong *et al.* (2007).

Experimental

Crystal data [Nd(C₈H₇O₃)₃(C₁₂H₈N₂)] $M_r = 777.85$ Monoclinic, $P2_1/n$ a = 20.103 (5) Å b = 8.5028 (17) Å c = 20.7887 (14) Å $\beta = 106.997$ (4)°

 $V = 3398.3 (11) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.59 \text{ mm}^{-1}$ T = 273 (2) K $0.33 \times 0.13 \times 0.08 \text{ mm}$ $R_{\rm int} = 0.041$

3 restraints

 $\Delta \rho_{\text{max}} = 1.04 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

25585 measured reflections

6951 independent reflections

4794 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 1996) $T_{\min} = 0.626, T_{\max} = 0.885$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.112$ S = 1.016951 reflections 403 parameters

Table 1

Table

Selected geometric parameters (A, \circ) .

e e			
Nd1-01	2.484 (3)	Nd1-O4	2.818 (4)
Nd1-O2	2.412 (3)	Nd1-N1	2.743 (4)
Nd1-O3	2.564 (3)	Nd1—N2	2.718 (4)
O1-Nd1-O2	145.95 (10)	O3-Nd1-N1	63.59 (11)
O1-Nd1-O3	73.37 (10)	O4-Nd1-N1	102.31 (10)
O1-Nd1-O4	65.19 (9)	O1-Nd1-N2	80.90 (11)
O2-Nd1-O3	139.00 (10)	O2-Nd1-N2	96.80 (10)
O2-Nd1-O4	139,50 (9)	O3-Nd1-N2	74.13 (10)
O3-Nd1-O4	48.10 (9)	O4-Nd1-N2	118.24 (10)
O1-Nd1-N1	127.33 (11)	N1-Nd1-N2	59.81 (12)
O2−Nd1≁N1	77.16 (11)		· · · ·

Hydrogen-bond geometry (Å, °).

D—H···A	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C30-H30B\cdots O2^{i}$	0.97	2.40	3.347 (6)	164
$C12-H12\cdots O8^{ii}$	0.93	2.59	3.438 (7)	152
$C12-H12\cdots O6^{ii}$	0.93	2.47	3.057 (6)	122
C10−H10···O3 ⁱⁱⁱ	0.93	2.34	3.215 (6)	156
$C1-H1\cdots O5^{iv}$	0.93	2.44	3.130 (6)	132

Symmetry codes: (i) x, y - 1, z; (ii) -x + 2, -y + 1, -z + 2; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 2, -y, -z + 2.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Science and Technology Bureau of Jian, Jiangxi Province of China (grant No. 20052827).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2277).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007). Acta Cryst. E63, m1885–m1886.

Acta Cryst. (2007). E63, m2019 [doi:10.1107/S1600536807030371]

(1,10-Phenanthroline- $\kappa^2 N, N'$)tris(phenoxyacetato)- $\kappa O; \kappa O; \kappa O, O'$ -neodymium(III)

H. Zhong, X.-M. Yang, Q.-Y. Luo and Y.-P. Xu

Comment

The crystal structure of tri(phenoxyacetic acid)(1,10-phenanthroline-N,N') cerium(III), (II), has recently been reported (Zhong *et al.*, 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II). We report herein the crystal structure of (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The six-coordinate environment of the Nd atom is completed by two N atoms of the 1,10-phenanthroline (phen) ligand and four O atoms of the three phenoxyacetic acid ligand (Table 1). The Nd—O and Nd—N bonds are in the range of [2.412 (3)–2.818 (4) Å] and [2.718 (4)–2.743 (4) Å], respectively (Table 1).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) lead to a supramolecular network structure (Fig. 2), as in (II), in which they may be effective in the stabilization of the structure.

The both compounds, (I) and (II), are isostructural.

Experimental

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Neodymium (III) chloride hexahydrate (107.3 mg, 0.3 mmol), phen (59.4 mg, 0.3 mmol), phenoxyacetic acid (91.3 mg, 0.6 mmol) and distilled water (3 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 423 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals, which were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

 $l = -26 \rightarrow 25$

25585 measured reflections

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.041$

 $wR(F^2) = 0.112$

S = 1.01

6951 reflections

403 parameters

3 restraints

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

H-atom parameters constrained

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho_{max} = 1.04 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: none

 $w = 1/[\sigma^2(F_0^2) + (0.0646P)^2 + 0.9706P]$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

sites

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Nd1	0.931203 (12)	0.19066 (3)	0.964281 (11)	0.03943 (10)
01	0.97063 (16)	0.0607 (4)	0.87482 (14)	0.0468 (7)
O2	0.93999 (16)	0.4207 (3)	1.03415 (14)	0.0474 (7)
O3	0.84628 (14)	-0.0359 (3)	0.91886 (14)	0.0439 (7)
O4	0.94655 (15)	-0.1382 (4)	0.97728 (15)	0.0497 (8)
O5	1.06695 (16)	-0.0827 (4)	0.92164 (14)	0.0495 (8)
O6	1.00778 (18)	0.6127 (4)	1.09087 (15)	0.0567 (9)
O7	1.11832 (18)	-0.0166 (4)	0.82194 (17)	0.0667 (10)
O8	0.98695 (18)	0.5275 (4)	1.20633 (15)	0.0617 (9)
09	0.78466 (18)	-0.3261 (4)	0.89805 (19)	0.0627 (10)
N1	0.79683 (19)	0.2343 (5)	0.9669 (2)	0.0476 (9)
N2	0.8341 (2)	0.3069 (4)	0.85460 (18)	0.0482 (9)
C1	0.7784 (3)	0.1918 (6)	1.0198 (3)	0.0635 (14)
H1	0.8131	0.1688	1.0593	0.076*
C2	0.7093 (3)	0.1795 (8)	1.0198 (4)	0.0833 (19)
H2	0.6978	0.1502	1.0583	0.100*
C3	0.6583 (3)	0.2123 (9)	0.9604 (4)	0.093 (2)

Н3	0.6118	0.2026	0.9588	0.111*
C4	0.6745 (3)	0.2577 (8)	0.9049 (3)	0.0744 (17)
C5	0.7462 (3)	0.2674 (6)	0.9088 (3)	0.0527 (12)
C6	0.6227 (4)	0.2962 (10)	0.8401 (4)	0.109 (3)
H6	0.5755	0.2863	0.8360	0.131*
C7	0.6420 (4)	0.3441 (10)	0.7881 (4)	0.104 (3)
H7	0.6080	0.3721	0.7488	0.125*
C8	0.7134 (3)	0.3546 (7)	0.7900 (3)	0.0707 (17)
C9	0.7662 (3)	0.3100 (5)	0.8510(2)	0.0519 (12)
C10	0.7358 (4)	0.4037 (8)	0.7368 (3)	0.087 (2)
H10	0.7036	0.4389	0.6976	0.105*
C11	0.8038 (4)	0.4014 (7)	0.7409 (3)	0.0795 (18)
H11	0.8187	0.4337	0.7046	0.095*
C12	0.8526 (3)	0.3493 (6)	0.8011 (2)	0.0626 (14)
H12	0.8993	0.3447	0.8030	0.075*
C13	1.0286 (2)	0.0034 (5)	0.8772 (2)	0.0427 (10)
C14	1.0524 (3)	0.0512 (6)	0.8173 (2)	0.0549 (12)
H14A	1.0186	0.0165	0.7761	0.066*
H14B	1.0557	0.1649	0.8157	0.066*
C15	1.1459 (3)	0.0143 (7)	0.7703 (3)	0.0625 (14)
C16	1.2078 (3)	-0.0571 (8)	0.7766 (3)	0.0792 (17)
H16	1.2284	-0.1192	0.8139	0.095*
C17	1.2402 (4)	-0.0364(9)	0.7267 (4)	0.094 (2)
H17	1.2829	-0.0841	0.7307	0.113*
C18	1.2100 (5)	0.0526 (9)	0.6724 (4)	0.103 (3)
H18	1.2320	0.0648	0.6390	0.124*
C19	1.1488 (5)	0.1241 (10)	0.6655 (4)	0.107 (3)
H19	1.1286	0.1852	0.6277	0.129*
C20	1.1150 (4)	0.1061 (8)	0.7159 (3)	0.0832 (19)
H20	1.0728	0.1556	0.7120	0.100*
C21	0.9694 (2)	0.4987 (5)	1.0865 (2)	0.0438 (10)
C22	0.9488 (3)	0.4453 (6)	1.1474 (2)	0.0554 (12)
H22A	0 8994	0.4632	1 1397	0.066*
H22B	0.9574	0 3333	1 1540	0.066*
C23	0.9745 (3)	0.4892 (6)	1.2653 (2)	0.0550 (12)
C24	0.9277 (3)	0 3802 (8)	1 2720 (3)	0 0724 (16)
H24	0.9013	0.3251	1 2345	0.087*
C25	0.9193 (4)	0.3515 (10)	1 3342 (3)	0.105 (3)
H25	0.8878	0.2752	1 3388	0.126*
C26	0.9568 (4)	0.4343(10)	1 3899 (3)	0.103 (2)
H26	0.9496	0.4169	1 4315	0.123*
C27	1 0044 (4)	0 5414 (9)	1 3836 (3)	0.089(2)
H27	1.0306	0 5959	1 4213	0.107*
C28	1 0143 (3)	0 5704 (7)	1 3218 (3)	0.0712 (15)
H28	1.0472	0.6436	1.3178	0.085*
C29	0.8838 (2)	-0 1507 (6)	0.9391 (2)	0.0445 (11)
C30	0.8574 (3)	-0.3145 (5)	0.9194(3)	0.0557 (12)
H30A	0.8753	-0 3508	0.8835	0.067*
H30B	0.8754	-0 3839	0.9576	0.067*
	0.070	0.0007	0.2010	0.007

C31	0.7525 (6)	-0.3138 (9)	0.9448 (6)	0.1243 (14)
C32	0.7840 (5)	-0.2778 (9)	1.0118 (6)	0.1243 (14)
H32	0.8316	-0.2608	1.0285	0.149*
C33	0.7406 (5)	-0.2683 (9)	1.0529 (6)	0.1243 (14)
H33	0.7595	-0.2444	1.0983	0.149*
C34	0.6740 (5)	-0.2923 (9)	1.0290 (6)	0.1243 (14)
H34	0.6474	-0.2803	1.0585	0.149*
C35	0.6393 (5)	-0.3341 (9)	0.9635 (5)	0.1243 (14)
H35	0.5920	-0.3572	0.9496	0.149*
C36	0.6802 (5)	-0.3391 (9)	0.9200 (5)	0.1243 (14)
H36	0.6598	-0.3592	0.8745	0.149*

Atomic dis	Atomic displacement parameters (\hat{A}^2)					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.04609 (15)	0.03354 (15)	0.03390 (14)	-0.00157 (11)	0.00426 (9)	0.00058 (10)
01	0.0562 (19)	0.0452 (19)	0.0387 (16)	0.0066 (16)	0.0134 (14)	0.0014 (14)
02	0.068 (2)	0.0318 (16)	0.0408 (17)	-0.0052 (15)	0.0138 (14)	-0.0046 (13)
03	0.0444 (16)	0.0331 (17)	0.0466 (17)	0.0008 (14)	0.0015 (13)	-0.0033 (13)
04	0.0462 (18)	0.0494 (19)	0.0449 (18)	-0.0033 (15)	0.0000 (14)	0.0073 (14)
05	0.0603 (19)	0.0485 (19)	0.0409 (17)	0.0073 (16)	0.0166 (14)	0.0100 (15)
O6	0.084 (2)	0.048 (2)	0.0386 (17)	-0.0261 (19)	0.0183 (16)	-0.0031 (15)
O7	0.068 (2)	0.083 (3)	0.057 (2)	0.017 (2)	0.0291 (18)	0.0200 (19)
08	0.087 (2)	0.060 (2)	0.0387 (18)	-0.0270 (19)	0.0193 (17)	-0.0062 (15)
09	0.058 (2)	0.045 (2)	0.072 (2)	-0.0135 (16)	-0.0015 (18)	-0.0068 (17)
N1	0.047 (2)	0.040 (2)	0.048 (2)	0.0041 (17)	0.0034 (18)	-0.0080 (17)
N2	0.061 (2)	0.036 (2)	0.038 (2)	0.0031 (18)	-0.0008 (17)	0.0002 (16)
C1	0.057 (3)	0.073 (4)	0.059 (3)	0.008 (3)	0.015 (3)	-0.002 (3)
C2	0.057 (3)	0.112 (6)	0.086 (5)	0.003 (3)	0.029 (3)	-0.013 (4)
C3	0.048 (3)	0.105 (6)	0.121 (6)	-0.004 (3)	0.020 (4)	-0.017 (5)
C4	0.052 (3)	0.084 (4)	0.073 (4)	0.006 (3)	-0.003 (3)	-0.018 (3)
C5	0.051 (3)	0.036 (3)	0.062 (3)	0.007 (2)	0.001 (2)	-0.011 (2)
C6	0.061 (4)	0.139 (8)	0.102 (6)	0.016 (4)	-0.018 (4)	-0.030 (6)
C7	0.079 (5)	0.109 (6)	0.087 (5)	0.038 (4)	-0.034 (4)	-0.022 (5)
C8	0.074 (4)	0.061 (3)	0.053 (3)	0.018 (3)	-0.018 (3)	-0.011 (3)
C9	0.059 (3)	0.034 (3)	0.046 (3)	0.006 (2)	-0.011 (2)	-0.004 (2)
C10	0.119 (6)	0.068 (4)	0.046 (3)	0.018 (4)	-0.021 (3)	0.001 (3)
C11	0.117 (5)	0.071 (4)	0.038 (3)	-0.002 (4)	0.003 (3)	0.011 (3)
C12	0.080 (4)	0.051 (3)	0.047 (3)	-0.002 (3)	0.005 (3)	0.008 (2)
C13	0.056 (3)	0.033 (2)	0.037 (2)	-0.007 (2)	0.011 (2)	-0.0030 (19)
C14	0.064 (3)	0.056 (3)	0.047 (3)	0.005 (3)	0.019 (2)	0.011 (2)
C15	0.070 (3)	0.067 (4)	0.059 (3)	-0.008 (3)	0.033 (3)	0.001 (3)
C16	0.079 (4)	0.096 (5)	0.073 (4)	0.002 (4)	0.037 (3)	-0.002 (4)
C17	0.092 (5)	0.097 (6)	0.113 (6)	-0.006 (4)	0.062 (4)	-0.008 (5)
C18	0.138 (7)	0.083 (5)	0.126 (7)	-0.017 (5)	0.096 (6)	-0.005 (5)
C19	0.156 (7)	0.101 (5)	0.091 (5)	0.010 (6)	0.077 (5)	0.027 (4)
C20	0.100 (5)	0.089 (5)	0.078 (4)	0.007 (4)	0.053 (4)	0.023 (4)
C21	0.058 (3)	0.034 (2)	0.038 (2)	-0.001(2)	0.013 (2)	0.0013 (19)

C22	0.074 (3)	0.051 (3)	0.043 (3)	-0.018 (3)	0.019 (2)	-0.004(2)
C23	0.073 (3)	0.054 (3)	0.037 (3)	-0.002 (3)	0.015 (2)	0.003 (2)
C24	0.078 (4)	0.088 (4)	0.053 (3)	-0.033 (3)	0.022 (3)	-0.004 (3)
C25	0.127 (6)	0.134 (7)	0.067 (4)	-0.056 (5)	0.048 (4)	-0.003 (4)
C26	0.126 (6)	0.140 (7)	0.051 (4)	-0.026 (5)	0.040 (4)	0.009 (4)
C27	0.117 (5)	0.104 (5)	0.041 (3)	-0.021 (4)	0.013 (3)	-0.010 (3)
C28	0.086 (4)	0.073 (4)	0.051 (3)	-0.020 (3)	0.016 (3)	-0.011 (3)
C29	0.048 (3)	0.049 (3)	0.032 (2)	-0.006(2)	0.0055 (19)	-0.0039 (19)
C30	0.061 (3)	0.043 (3)	0.056 (3)	0.002 (2)	0.008 (2)	-0.007 (2)
C31	0.136 (3)	0.086 (2)	0.173 (4)	0.014 (2)	0.080 (3)	0.027 (3)
C32	0.136 (3)	0.086 (2)	0.173 (4)	0.014 (2)	0.080 (3)	0.027 (3)
C33	0.136 (3)	0.086 (2)	0.173 (4)	0.014 (2)	0.080 (3)	0.027 (3)
C34	0.136 (3)	0.086 (2)	0.173 (4)	0.014 (2)	0.080 (3)	0.027 (3)
C35	0.136 (3)	0.086 (2)	0.173 (4)	0.014 (2)	0.080 (3)	0.027 (3)
C36	0.136 (3)	0.086 (2)	0.173 (4)	0.014 (2)	0.080 (3)	0.027 (3)
<i>C i i</i>	(2 0)					
Geometric para	emeters (A, ⁶)					
Nd1—O1		2.484 (3)	C1	1—C12	1.4	416 (7)
Nd1—O2		2.412 (3)	C1	1—H11	0.9	9300
Nd1—O3		2.564 (3)	C1	2—H12	0.9	9300
Nd1—O4		2.818 (4)	C1	.3—C14	1.5	515 (6)
Nd1—N1		2.743 (4)	C1	4-H14A	0.9	9700
Nd1—N2		2.718 (4)	C1	4—H14B	0.9	9700
Nd1—O4 ⁱ		2.443 (3)	C1	5—C16	1.3	358 (8)
Nd1—O5 ⁱ		2.533 (3)	C1	5—C20	1.3	366 (8)
Nd1—O6 ⁱⁱ		2.537 (3)	C1	6—C17	1.3	387 (8)
O1—C13		1.251 (5)	C1	6—H16	0.9	9300
O2—C21		1.264 (5)	C1	7—C18	1.3	347 (10)
O3—C29		1.231 (5)	C1	7—H17	0.9	9300
O4—C29		1.282 (5)	C1	8—C19	1.3	343 (10)
O4—Nd1 ⁱ		2.443 (3)	C1	8—H18	0.9	9300
O5—C13		1,252 (5)	C1	9—C20	1.4	413 (8)
O5—Nd1 ⁱ		2.533 (3)	C1	9—H19	0.9	9300
O6—C21		1.225 (5)	C2	20—H20	0.9	9300
O6—Nd1 ⁱⁱ		2.537 (3)	C2	21—C22	1.5	513 (6)
O7—C15		1.369 (6)	C2	22—H22A	0.9	9700
O7—C14		1.422 (6)	C2	2—H22B	0.9	9700
O8—C23		1.361 (5)	C2	23—C24	1.3	357 (7)
O8—C22		1.424 (5)	C2	23—C28	1.3	395 (7)
O9—C31		1.318 (10)	C2	24—C25	1.3	375 (8)
O9—C30		1.401 (6)	C2	24—H24	0.9	9300
N1—C1		1.310 (6)	C2	25—C26	1.3	376 (9)
N1—C5		1.362 (6)	C2	25—H25	0.9	9300
N2—C12		1.322 (6)	C2	26—C27	1.3	354 (9)
N2—C9		1.345 (6)	C2	26—H26	0.9	9300
C1—C2		1.394 (8)	C2	27—C28	1.3	379 (8)
C1—H1		0.9300	C2	27—H27	0.9	9300

C2—C3	1.383 (10)	C28—H28	0.9300
C2—H2	0.9300	C29—C30	1.505 (6)
C3—C4	1.344 (9)	C30—H30A	0.9700
С3—Н3	0.9300	С30—Н30В	0.9700
C4—C5	1.422 (8)	C31—C32	1.386 (14)
C4—C6	1.479 (9)	C31—C36	1.410 (13)
С5—С9	1.421 (7)	C32—C33	1.390 (11)
C6—C7	1.316 (11)	С32—Н32	0.9300
С6—Н6	0.9300	C33—C34	1.300 (12)
C7—C8	1.427 (10)	С33—Н33	0.9300
С7—Н7	0.9300	C34—C35	1.383 (13)
C8—C10	1.375 (9)	C34—H34	0.9300
C8—C9	1.446 (6)	C35—C36	1.388 (11)
C10—C11	1.346 (9)	С35—Н35	0.9300
С10—Н10	0.9300	С36—Н36	0.9300
01—Nd1—O2	145.95 (10)	С12—С11—Н11	120.4
O1—Nd1—O3	73.37 (10)	N2-C12-C11	122.5 (6)
O1—Nd1—O4	65.19 (9)	N2—C12—H12	118.8
O2—Nd1—O3	139.00 (10)	С11—С12—Н12	118.8
O2—Nd1—O4	139.50 (9)	01—C13—O5	128.5 (4)
O3—Nd1—O4	48.10 (9)	O1—C13—C14	112.2 (4)
O1—Nd1—N1	127.33 (11)	05-013-014	119.3 (4)
O2—Nd1—N1	77.16 (11)	07	110.3 (4)
O3—NdI—NI	63.59 (11)	07C14H14A	109.6
04—Ndl—Nl		CI3-CI4-HI4A	109.6
OI—NdI—N2	80.90 (11)	07—C14—H14B	109.6
O2—Nd1—N2	96.80 (10)	*CI3CI4HI4B	109.6
03—NdI—N2	/4.13 (10)	H14A—C14—H14B	108.1
V4—Nd1—N2	118.24 (10) 50.84 (12)	C16-C15-C20	121.1(5)
	39.81 (12) 97.96 (11)	C10-C15-O7	114.2(3)
O2—Nd1—O4	78.25 (10)	$C_{20} = C_{15} = 07$	124.7 (3)
	76.23 (10)		117.5 (0)
02—NdI—OS	75 .01 (10)		120.3
O4'—Nd1—O5'	/4.40 (10)	C17—C16—H16	120.3
01—Nd1—O5 ¹	128.26 (10)	C18—C17—C16	120.2 (7)
O2—Nd1—O6 ⁿ	77.15 (10)	C18—C17—H17	119.9
$O4^{1}$ —Nd1— $O6^{11}$	78.23 (11)	С16—С17—Н17	119.9
O1—Nd1—O6 ⁱⁱ	69.68 (10)	C19—C18—C17	121.1 (7)
O5 ⁱ —Nd1—O6 ⁱⁱ	141.73 (10)	C19—C18—H18	119.4
O4 ⁱ —Nd1—O3	120.72 (11)	C17—C18—H18	119.4
O5 ⁱ —Nd1—O3	84.18 (10)	C18—C19—C20	119.8 (7)
O6 ⁱⁱ —Nd1—O3	133.35 (10)	С18—С19—Н19	120.1
O4 ⁱ —Nd1—N2	148.77 (11)	С20—С19—Н19	120.1
O5 ⁱ —Nd1—N2	136.69 (11)	С15—С20—С19	118.4 (6)
O6 ⁱⁱ —Nd1—N2	72.83 (12)	C15—C20—H20	120.8

O4 ⁱ —Nd1—N1	150.26 (11)	C19—C20—H20	120.8
O5 ⁱ —Nd1—N1	77.04 (11)	O6—C21—O2	127.2 (4)
O6 ⁱⁱ —Nd1—N1	121.92 (12)	O6—C21—C22	119.7 (4)
O4 ⁱ —Nd1—O4	72.85 (11)	O2—C21—C22	112.9 (4)
$O5^{i}$ —Nd1—O4	65.13 (10)	O8—C22—C21	111.2 (4)
$O6^{ii}$ —Nd1—O4	130.06 (10)	08—C22—H22A	109.4
C13	129.9 (3)	C21—C22—H22A	109.4
C21—O2—Nd1	151.3 (3)	08—C22—H22B	109.4
C29—O3—Nd1	101.2 (3)	C21—C22—H22B	109.4
$C29-O4-Nd1^{i}$	163.0 (3)	H22A—C22—H22B	108.0
C29—O4—Nd1	87.8 (3)	C24—C23—O8	124.8 (4)
Nd1 ⁱ —O4—Nd1	107.15 (11)	C24—C23—C28	119.8 (5)
C13—O5—Nd1 ⁱ	137.8 (3)	08—C23—C28	115.4 (5)
C21—O6—Nd1 ⁱⁱ	149.9 (3)	C23—C24—C25	119.8 (6)
C15—O7—C14	116.8 (4)	C23—C24—H24	120.1
C23—O8—C22	117.6 (4)	C25—C24—H24	120.1
C31—O9—C30	116.8 (6)	C24—C25—C26	120.9 (6)
C1—N1—C5	118.7 (4)	C24—C25—H25	119.6
C1—N1—Nd1	120.1 (3)	C26—C25—H25	119.6
C5—N1—Nd1	119.7 (3)	C27 C26 C25	119.5 (6)
C12—N2—C9	118.5 (4)	С27-С26-Н26	120.3
C12—N2—Nd1	119.7 (3)	C25-C26-H26	120.3
C9—N2—Nd1	121.5 (3)	C26-C27-C28	120.6 (6)
N1—C1—C2	123.2 (5)	С26—С27—Н27	119.7
N1—C1—H1	118.4	С28—С27—Н27	119.7
C2—C1—H1	118.4	C27—C28—C23	119.5 (6)
C3—C2—C1	117.6 (6)	C27—C28—H28	120.2
С3—С2—Н2	121.2	C23—C28—H28	120.2
C1—C2—H2	121.2	O3—C29—O4	122.7 (4)
C4—C3—C2	121.5 (6)	O3—C29—C30	120.6 (4)
С4—С3—Н3	119.2	O4—C29—C30	116.8 (4)
С2—С3—Н3	119.2	O9—C30—C29	113.9 (4)
C3—C4—C5	117.6 (6)	O9—C30—H30A	108.8
C3—C4—C6	124.2 (7)	С29—С30—Н30А	108.8
C5—C4—C6	118.1 (7)	O9—C30—H30B	108.8
N1—C5—C9	118.7 (4)	С29—С30—Н30В	108.8
N1—C5—C4	121.4 (5)	H30A—C30—H30B	107.7
C9—C5—C4	120.0 (5)	O9—C31—C32	125.5 (10)
C7—C6—C4	121.2 (7)	O9—C31—C36	113.3 (10)
С7—С6—Н6	119.4	C32—C31—C36	121.2 (10)
С4—С6—Н6	119.4	C31—C32—C33	116.6 (10)
C6—C7—C8	122.2 (6)	С31—С32—Н32	121.7
С6—С7—Н7	118.9	С33—С32—Н32	121.7
С8—С7—Н7	118.9	C34—C33—C32	121.0 (11)
C10—C8—C7	124.0 (6)	С34—С33—Н33	119.5
C10—C8—C9	117.1 (6)	С32—С33—Н33	119.5
C7—C8—C9	118.8 (6)	C33—C34—C35	125.7 (10)

N2—C9—C5	118.8 (4)	C33—C34—H34	117.1
N2—C9—C8	121.8 (5)	C35—C34—H34	117.1
C5—C9—C8	119.4 (5)	C34—C35—C36	115.1 (10)
C11—C10—C8	120.7 (5)	C34—C35—H35	122.4
C11—C10—H10	119.6	C36—C35—H35	122.4
C8—C10—H10	119.6	C35—C36—C31	120.1 (11)
C10—C11—C12	119.2 (6)	C35—C36—H36	119.9
C10—C11—H11	120.4	C31—C36—H36	119.9

Symmetry codes: (i) -*x*+2, -*y*, -*z*+2; (ii) -*x*+2, -*y*+1, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···A	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C30—H30B···O2 ⁱⁱⁱ	0.97	2.40	3.347 (6)	164
C12—H12···O8 ⁱⁱ	0.93	2.59	3.438 (7)	152
C12—H12···O6 ⁱⁱ	0.93	2.47	3.057 (6)	122
C10—H10···O3 ^{iv}	0.93	2.34	3.215 (6)	156
C1—H1···O5 ⁱ	0.93	2.44	3.130 (6)	132

Fig. 2